一个例子:
[tex]$n
[tex]$(1+\frac{1}{n})^{n}<(1+\frac{1}{n+1})^{n+1};$[/tex]
[tex]$(1+\frac{1}{n})^{n}<3;$[/tex]
问题: 在有理数的集合里面,当[tex]n$\rightarrow\infty,$[/tex]那么[tex]$(1+\frac{1}{n})^{n}$[/tex]意味着什么?
设[tex]$x_{n}=(1+\frac{1}{n})^{n}$[/tex], 并假设[tex]$x_{\infty}=\frac{p}{q}$[/tex], 但是, [tex]$x_{\infty}\neq\frac{p}{q}$[/tex] [tex]$$x_{n}=1^{n}+...+\frac{1}{n^{n}}[/tex]
那么我们可以说[tex]$x_{1}
[tex]=1+1+\frac{1}{2!}(1-\frac{1}{n}...$$[/tex]
新评论
12 years 3 weeks ago
12 years 3 weeks ago
13 years 7 weeks ago
13 years 7 weeks ago
13 years 31 weeks ago
13 years 31 weeks ago
13 years 31 weeks ago
13 years 32 weeks ago
13 years 32 weeks ago
13 years 51 weeks ago