一个例子:
[tex]$n
[tex]$(1+\frac{1}{n})^{n}<(1+\frac{1}{n+1})^{n+1};$[/tex]
[tex]$(1+\frac{1}{n})^{n}<3;$[/tex]
问题: 在有理数的集合里面,当[tex]n$\rightarrow\infty,$[/tex]那么[tex]$(1+\frac{1}{n})^{n}$[/tex]意味着什么?
设[tex]$x_{n}=(1+\frac{1}{n})^{n}$[/tex], 并假设[tex]$x_{\infty}=\frac{p}{q}$[/tex], 但是, [tex]$x_{\infty}\neq\frac{p}{q}$[/tex] [tex]$$x_{n}=1^{n}+...+\frac{1}{n^{n}}[/tex]
那么我们可以说[tex]$x_{1}
[tex]=1+1+\frac{1}{2!}(1-\frac{1}{n}...$$[/tex]
新评论
12 years 51 weeks ago
12 years 51 weeks ago
14 years 3 weeks ago
14 years 3 weeks ago
14 years 27 weeks ago
14 years 28 weeks ago
14 years 28 weeks ago
14 years 28 weeks ago
14 years 28 weeks ago
14 years 47 weeks ago