从某一个角度上看到话,会发现我们人类身处这个宇宙的一个极端:
这个宇宙里面能量非常小的变化,对人类的生命自身具有极大的意义。所有的生命,特别是人类的大脑,都只能在极小的温度范围内,才能正常存活;而正是这极小的能量变化,在物质组成从分子到生物大分子、以至于细胞和生命体系的序列中,构造出整个宇宙最复杂的物质体系。
然后,当我们从自身存在所处的这个物理处境,一路采用越来越大的能量,往更大的能量变化的地域看过去,就看到了失去外层电子的离子,看到了原子核,看到了质子中子电子光子...同时,也看到了太阳系、黑洞、伽玛爆、银河系、本星系团、本超星系团、...一直到我们现在的物理学所能想象的能标极大处-普朗克能标,大概是10的19次方千兆电子伏特。
所以,从能量的意义上,人类自身的构造,其实处于宇宙的一个极端:能量变化极微而极精。
那么高能物理,就是人类使用或依靠越来越大的能量,撕裂出的宇宙景观。
这个系列,就是试图叙述迄今我们这个撕裂过程中的那些重要的事情。
1,X射线的实质
伦琴发现X射线时,距离麦克斯韦完整论述电磁场理论已经20多年了,但仍有相当一部分前沿物理学家,不仅是实验物理学家,并不是完全掌握了电磁场理论。
例如,伦琴、伟大的统计物理学家玻耳兹曼、FitzGerald、Lodge等人,都倾向于认为X射线是作为光的传播介质的以太的纵波。
伟大的洛仑兹也含糊不清,只有汤姆逊等少数人正确理解为作为横波的光。
x射线的发现纯属偶然,因为伦琴及其助手,只是在研究当时很流行的阴极射线,当然是受到赫兹及其学生勒纳的工作的吸引。当时他们所使用的鲁姆科夫感应线圈和西托夫真空管,只要一开机,就都已经在产生X射线。只是不幸的是,勒纳甚至也用上了荧光物质和发现了照相底片被曝光,但他却不知出于何种考虑,而使用了厚厚的铅材包裹真空管,而幸运的伦琴只是简单地用黑纸板!
2,贝克勒尔并非偶然的狗屎运
据贝克勒尔在1903年的回忆,他在伦琴于1896年1月1日公开其发现X射线的论文20天后,法国科学院针对此发现而召开的会议上,深受激励,他运用其实验家的思维方式,与会议的报告者彭加勒有大致如下的一段对话:
贝:伦琴的射线是从哪里发射出来的?
彭:真空管壁上的最亮的荧光点,应该就是X射线发射出来的源头。
贝:X射线是否来自荧光物质的照射激发?是不是其他荧光物质,只要被照射,就可以发出X射线呢?
贝的这个推测估计是和彭想到一起了,10天后彭写了篇文章,提出:是不是不管什么荧光,只要强度够高,就会产生X射线?
也有可能想到这点的,并不只是贝克勒尔一个人。很快,就有了很多人去找各种能够发荧光的物质做实验,试图发现X射线,甚至有人收集萤火虫。。。
贝克勒尔想到当然就动手!托祖上之福,他在采用某些磷光物质失败之后,马上选择了铀盐,因为从他祖父开始,就研究荧光现象,而他父亲恰好研究过铀盐,他自己在15年前就因此而制作了很好的铀盐片(磷酸铀铣钾)。
贝克勒尔的运气还不仅仅是这些。
他的第一次实验是仿照伦琴的思路,用太阳代替阴极射线,暴晒铀盐和被黑纸包裹的底片,结果不甚稀奇,底片被曝光了。
第二次实验,很不凑巧,巴黎连续阴了好些天,没有了太阳的暴晒,贝克勒尔可能是心不在焉,也可能是别的什么原因,总之是不可考了,他仍然拿出底片冲洗,很震惊的发现,没有太阳也一样!
于是,开启20世纪的原子核放射性就这样被发现了,看似纯属偶然,但,也是必然。
因为一切工具和材料,都已经是现成的了。
所以,尽管X射线和放射性,完全是牛马不相及的两回事,但是,为了研究甲,而突然发现乙,这样的戏剧性情节,在现代物理学史上,并非孤例!倒是很常见呵呵!
所以,尽管LHC马上要开机,大家都等着找到希格斯子,但内心也对发现点什么别的从未预计到的什么,也是有所期待的。
这其实是一种谦逊的美德。
3,居里夫人是真正伟大的物理学家。
为什么这么说呢?不要说她是女性,然后假惺惺地说一个女性如何如何...忘记她的性别,作为一个物理学家,她确实是伟大的。因为,她敏锐地盯住了放射性现象。
要知道,即使贝克勒尔的发现轰动一时,但也远远不及X射线的发现所带来的后续研究热潮。因此,没多久,就没有多少人再关注铀的放射性现象了,包括贝克勒尔本人,他也干别的(塞曼效应)去了。
但这时,居里却对她丈夫说,“研究这种现象对我好像有特别的吸引力...我决定做这个...为了超越贝克勒尔的工作,我必须采用定量的方法。”
她一定是感觉到了放射性现象里面隐藏了远超出时人想象的秘密。
4,居里夫人的惊人洞察力
不追风还只是居里夫人的第一个超越众人的表现,她的伟大随后就接踵而至。
既然是要定量研究,居里夫人很自然地选择了电学研究路径,即在一个电磁学研究环境中来研究放射性,因为当时已经能够做到非常精确地测量各种电磁学量,而贝克勒尔式的用照相底片做曝光实验,没法定量。
于是她模仿了当时汤姆逊(J.J.Thomson)用来研究X射线的一个实验设计:用一个8cm直径的平板电容,在其板上抹上一层具有放射性的铀盐,由于猜想放射性会类似X射线那样,导致电容漏电,就可以通过测量漏电率来把放射性的强度给定量下来。
放射性确实能够使得电容漏电,所以这个实验很顺利。居里夫人用的平板电容,其两块平板间距3cm,之间加上的电压为100伏,再弄一台静电计,就可以很好地做这个实验了。
通过不断地在平板上抹不同的物质,很快,居里夫人就得到了明确的结论:
(1)除了各种铀盐,钍的氧化物也具有放射性,因此,“放射性”这个概念第一次被明确起来,即,不是铀的某种特性,而是一种广泛的很多物质都具有的自然现象:发射出同一种射线。
(2)放射性来源于物质的自然发射,该物质含量越多,放射性强度就越大。尽管居里夫人还不能肯定这是一种正比关系,(因为放射性强度还会受到抹到板上的放射性物质厚度的干扰),但她立刻地、毫不犹豫地,仅仅在9个月的时间里就得到一个结论:放射性是来自单个原子的特性。这是一个物理学历史上无比伟大的直观结论!
(3)甚至在她的第一篇关于放射性的论文里,她就指出:放射性是一种发现新物质的方法。尽管得到这个结论的直接来源,是因为她发现一种沥青铀矿具有的放射性强度远远超过金属铀本身,导致她不得不怀疑是另一种新的物质,或者更加直接地说,是一种新的元素,具有比铀更强的放射性。但这个思路里面隐含的概念就是她在9 个月后明确宣布出来的结论(2),放射性是一种单个原子层面的现象。
要明白这个直观何以伟大,只要知道当时几乎所有前沿的物理学家,都以为贝克勒尔所发现的铀盐放射性,大概和X射线一样,又一种光线而已!
例如,几乎一直正确的S.P.Thompson,毋庸置疑地伟大的彭加勒,等等。。。
5,为卢瑟福热场
要理解居里夫人的超群之处,就得明白当时的知识状况。
在卢瑟福上场之前,大家还都不知道原子到底是什么,只知道物质都是由原子组成,而原子只是一种抽象的物质基元,就像积木块,呃,这是2千多年前古希腊人就已经提出来的,科学革命迄至当时,只是进一步发展了元素的概念,然后基于元素、原子的观念,发展了化学。
化学嘛,就是瓶瓶罐罐,运用物质量(摩尔数)的概念,精确测量反应物比例,拿煤油灯酒精灯就可以烧出来的科学,呵呵,没有贬低的意思,只是说,化学所涉及到的能量大小,只是我们日常生活中常用的能量大小,今天我们知道,就是仅仅足够打碎分子的能量。
也就是出于这样一个知识基础,居里夫人提出放射性来自单个原子的属性,这是一个极其大胆的猜测!因为那时候,对于单个原子的属性,可以想象的,还只有质量、离子电荷(化学价),再来一个在电磁场里面可以测量到的质荷比,这些量,都不涉及原子的内部结构的概念,而只是把原子当成忽略其内部结构的小球即可。几乎同时,电子的概念,尚处于若明若暗之中。
放射性,当时也不明确到底是某种光,还是其他什么奇怪玩意,如果要理解为单个原子的属性,则显然只有基于原子的结构理论,才能加以理解。
接下来,就该以卢瑟福为主角了。
1934年7月4日,居里夫人死于因长期辐射和劳累导致的贫血症,时年66岁。
6.基本粒子就在我家里
卢瑟福是该上场了,但,在我讲述他眼花缭乱地玩弄阿尔法射线以探测原子内部结构之前,得花开又一枝,讲讲就住在我家里的基本粒子。
何谓基本粒子?就是我们不知道其内部结构的粒子。
一个乒乓球,如果你不知道它的内部结构,只知道外面看起来,是带色的,不是很重。。。那你也可以称呼它是基本粒子。
可惜的是,你还看到什么别的东西,是由乒乓球垒起来的吗?
没有?没有那就没意思了。
除了乒乓球,我们每个人的每天,都与至少两种基本粒子直接生活在一起,光子和电子。
你每天早晨睁开眼睛看到了新的一天,那就是光子射进你的眼睛,打到你的眼球视网膜上了...
然后你抓过手机,看到一条新短信,那就是光子射到你的手机,带动你的手机肚子里面的电子流动,连锁反应直到你看到短信显示在屏幕...
但是,你会说,我哪里看到了什么基本粒子,什么光子电子啊。。。
是的,你没“看到”。在我们的日常生活中,有无数的角色,都是我们直接看不到的,除非我们使用更高的能量,更精巧的技术,才能逼迫它们单独地闪亮现身于无比繁杂的存在之舞台,更主要的是,现身于你眼前!
先不说光子。
尽管光出现在我们日常生活当中的几乎每个地方,但人类自从学会使用火来烧烤牛排以来,就没有人敢于拿手指放到油灯上燃烧,那一点光,足以猝然终止你的手指上的一切生命活动,使得一切成为碳,成为灰!因此我们一出生就默认了,光,以及发光的物体,都涉及到“高能”的过程,这个所谓的高能,当然就是指相对我们自身生理活动的能量水平,例如你再发高热发高烧,都发不出火与可见光来。。。萤火虫?先不管。
确实,要迫使光线在我们眼前的表现像单个粒子,观念上,是一直到随后几十年里才逐渐被迫接受的观念;实验上呢,更是一直到20世纪后半世纪,人类发明激光之后,才能在实验室真正实现的实验。
历史上,最先被迫以粒子形式现身的,是电子。
7.关于电子的连续剧
照理说,电子要被我们认识到,应该是容易得多了,因为我们人体运行的基本机制,就是电子的流动。不对!是电荷的流动。
这就是问题之所在,在很长一段时间里,我们并不是必须要掌握电子的概念,也并不是非得要看到作为一种基本粒子的电子的存在,而只需要看到作为一种现象的电荷的存在,就足够轻松地理解主导我们日常现象的电磁现象了。所以,尽管从17、18世纪,人类就开始了具有科学意义上的对于电磁现象的研究,但一直到19世纪末年,汤姆逊总算是赶在20世纪来临之前夜,告诉大家,存在电子这么一种基本粒子。
为什么?因为能量。
人们最早获得单独电子束所使用的工具,是真空阴极射线管,而一根长30厘米,直径2.5厘米的玻璃管,内部真空度为0.01厘米汞柱气压,两端放入电极,要使得它放电产生单束电子流发射出来,至少得加上1千伏的电压!
1千伏对于今天的我们而言,似乎不算什么,窗外的高压电线动则几万几十万伏,家里的很快就要成旧式的电视里头,附着在显像管后头的高压包也能产生将近2万伏的高压,(呵呵,这个高压包提供的高压正是用来给电子加能量的!)但是对于19世纪的人们,可是一门高精尖技术。
真空阴极射线管要好用,也就是说,要能够放电发出辉光,需要两个条件,一个是得有给管子抽真空的技术,另一个就是给电极加高压的技术。
尽管17世纪就已经出现了抽真空的专门器具,但是直到德国波恩的一个吹玻璃的工人师傅盖斯勒(Geissler),发明了一种后来被称为盖斯勒泵的真空泵之后,才使得真空玻璃管的真空度达到0.1毫米汞柱。这种泵的核心原理和日常的水银温度计类似,巧妙地利用了水银在玻璃管里能够形成很好的真空的特性,反复稀释和抽走容器里面的空气。看得出,这是一个典型的能工巧匠的设计成果。
Heinrich Geißler,Heinrich Geissler,Geissler pump,盖斯勒,盖斯勒泵
要给电极加上1千伏的电压,正好,德国的高级技师鲁姆科夫发明了这样一种能够输出1千伏的变压器:
相比盖斯勒,鲁姆科夫应该算更高级些的技师,呵呵,如果按照技术复杂度来衡量的话。
鲁姆科夫变压器技术上的特点这里就不赘述了,其详细介绍见这里:H.D.Ruhmkorff,感应线圈,鲁姆科夫线圈
技术工人与发明家在科学史中所起的作用,是另一个有趣的话题,这里就先不叉开谈了。
鲁姆科夫变压器对于整个二十世纪都是意义非凡的,因为赫兹用它验证了电磁波;伦琴用它发现了X射线;马可尼用它发明了无线电报;汤姆逊用它发现了电子,等等等等,这种变压器,是当时世界上所有做电磁实验的物理实验室的必备关键设备,只有用它获得的高压,才能使得我们在20世纪进入电力世纪以及信息世纪。
当然,现在学电磁学的人可能会对它不屑一顾,因为它就是一个依靠反向开关来产生脉动直流,从而感应出高压交流的小变压器而已。
只能这么说,没有麦克斯韦,再堆积一百个鲁姆科夫也没用;有了麦克斯韦,20世纪就是命中注定的了。尽管赫兹、伦琴、马可尼并没有完全掌握麦克斯韦理论,但,有一个理论在前面指出会有什么,就不是一堆技师在黑暗中摸索所可比的了。
好了,器材准备好了,电子在哪里?
实际上,对于电磁学来说,电子并不是一个必需的概念,有了电荷的概念就足够了。因此,电子的概念,不是来自电磁学理论,而只能是来自实验的发现。
法拉第就是这么看的。
他所发现的电解定律,应该说,是电子留给人类的第一个华丽背影,但是,你也可以认为那是离子的大头照。
所以,法拉第在总结他的电解研究时说,“尽管我们不知道原子到底是什么,我们不一定要顽固使用小粒子之类的观念,那只是我们的想象。...有大量的事实表明,电力现象与物质的原子概念紧密关联,原子的许多惊人特性源于电力,例如化学亲和力就是一种电力。...我必须承认,我在说到原子这个词汇时,是非常小心的,因为尽管可以轻松地说这个原子那个原子,但,实际上要对原子的概念形成一个清晰的理解,非常之困难,当你所谈论的物质是化合物时,尤其困难。”
(Faraday, Experimental researches in electricity, #852,#869)
你看,法拉第对于原子的概念都还是非常犹豫和审慎的,因为他是一个彻底的实验家,他只对实验里面获得证实的概念才有十足的把握。
8.插播广告!
连续剧时间太长容易造成疲劳,所以插播一个激情广告。
拿一张白纸,你可以随意地涂画你所认为的世界是啥之想法。但是,要获得承认,你必须逮着你所描绘的疑犯,不然局里不会给你发工资。
假设,从此刻2008年9月11日下午3点28分开始,全世界所有的人都停止探索世界到底是个啥的问题,停止一切关于世界本原的实验和一切相关理论活动,高能啊宇宙啊物理研究机构都即刻解散。然后,我们依然可以活下去,估计可以活很长时间。。。
所以,原则上我们只有两个选择:或者什么也不干,或者通过思考来逮着疑犯。欧洲粒子实验室主任当初拟定LHC的规划时,就是面临这样一个选择,或者赋闲,或者造个大大的LHC,逮住希格斯粒子或者别的什么。
那么,为什么我们总是选择后者呢?
因为这样一个事实:即使我们可以画地为牢,使得我们让自己生活在一个可以把握的世界范围里面,但,那个牢其实只是存在于我们内心:它既不能保障我们面对未知世界的安全,也不能保障我们面对自我的幸福感。宇宙是宽广的,我们没法把自己的止步之处,虚妄地看作是世界之边缘。
所以,本质上不存在玻尔所谓的经典世界,世界是唯一而无需被隔断的,能否走出自己所画的牢房,只在于我们是否忍受鸵鸟姿态。
得插一句。
迄今为止,这个系列里面我所使用的概念都是不精确的,因为科学的发展从来不是必须基于完全精确的概念,总是一边走一边弄得清楚点。正如前面已经说过的,19~20世纪之交的时候,连原子的概念都是不清楚的,因为没人知道原子是否还有内部结构。
那么关于电子,汤姆逊知道些什么呢?考虑到直到今天,我们都还在等待LHC告诉我们电子的质量是怎么来的,所以,别指望汤姆逊所理解的电子与你的理解一样。
在我们动手抓电子之前,最好是先听一句惠勒唠叨了无数次的口头禅,“No elementary phenomenon is a phenomenon until it is a registered(observed)phenomenon。”这句话的言外之意太多,我试着勉强翻译一下:基本事件只有被你抓住,才可以说是一个现象。
这句话如果用粗糙的形式说出来,没有人会注意,因为太一般了,简直就是常识嘛!其实不然。
如果,我们同时观看到自己所处的日常世界,与构成这个日常世界的可能性微观世界,囧,这会是一种什么样的局势呢?大家自己想象好了...
在这样一个局势下,可以期望,我们的日常世界可以作为一个背景板,而在这个背景板上,有可能捕捉到来来往往的重重身影,它们正是来自微尺度世界粒子的行动剧舞台,被投射到我们的感知背景板之上。
在20世纪之前的化学和电磁学里面,就有很多的这类身影。
9.厨房魅影
在18~19世纪的化学家的典型实验记录里面,充斥了如下这类记录和成果:
1克氢和8克氧,做成9克水;
1克氢和35.5克氯气,做成36.5克氯化氢;
...
很像是一本记满配料表的菜谱,确实,那个时代的化学家要给自己盖一个实验室,很简单,就和增加一个厨房一样简单,有火,有瓶瓶罐罐,有勺有刀叉...就齐活了。但,正是在这样的厨房里面,化学家们第一个捕捉到了来自微观世界的角色的身影。
新评论
13 years 1 day ago
13 years 1 day ago
14 years 4 weeks ago
14 years 4 weeks ago
14 years 27 weeks ago
14 years 28 weeks ago
14 years 28 weeks ago
14 years 29 weeks ago
14 years 29 weeks ago
14 years 47 weeks ago