一个例子:
[tex]$n
[tex]$(1+\frac{1}{n})^{n}<(1+\frac{1}{n+1})^{n+1};$[/tex]
[tex]$(1+\frac{1}{n})^{n}<3;$[/tex]
问题: 在有理数的集合里面,当[tex]n$\rightarrow\infty,$[/tex]那么[tex]$(1+\frac{1}{n})^{n}$[/tex]意味着什么?
设[tex]$x_{n}=(1+\frac{1}{n})^{n}$[/tex], 并假设[tex]$x_{\infty}=\frac{p}{q}$[/tex], 但是, [tex]$x_{\infty}\neq\frac{p}{q}$[/tex] [tex]$$x_{n}=1^{n}+...+\frac{1}{n^{n}}[/tex]
那么我们可以说[tex]$x_{1}
[tex]=1+1+\frac{1}{2!}(1-\frac{1}{n}...$$[/tex]
新评论
11 years 50 weeks ago
11 years 50 weeks ago
13 years 2 weeks ago
13 years 2 weeks ago
13 years 25 weeks ago
13 years 26 weeks ago
13 years 26 weeks ago
13 years 26 weeks ago
13 years 26 weeks ago
13 years 45 weeks ago